39 research outputs found

    The Analysis of design and manufacturing tasks using haptic and immersive VR - Some case studies

    Get PDF
    The use of virtual reality in interactive design and manufacture has been researched extensively but the practical application of this technology in industry is still very much in its infancy. This is surprising as one would have expected that, after some 30 years of research commercial applications of interactive design or manufacturing planning and analysis would be widespread throughout the product design domain. One of the major but less well known advantages of VR technology is that logging the user gives a great deal of rich data which can be used to automatically generate designs or manufacturing instructions, analyse design and manufacturing tasks, map engineering processes and, tentatively, acquire expert knowledge. The authors feel that the benefits of VR in these areas have not been fully disseminated to the wider industrial community and - with the advent of cheaper PC-based VR solutions - perhaps a wider appreciation of the capabilities of this type of technology may encourage companies to adopt VR solutions for some of their product design processes. With this in mind, this paper will describe in detail applications of haptics in assembly demonstrating how user task logging can lead to the analysis of design and manufacturing tasks at a level of detail not previously possible as well as giving usable engineering outputs. The haptic 3D VR study involves the use of a Phantom and 3D system to analyse and compare this technology against real-world user performance. This work demonstrates that the detailed logging of tasks in a virtual environment gives considerable potential for understanding how virtual tasks can be mapped onto their real world equivalent as well as showing how haptic process plans can be generated in a similar manner to the conduit design and assembly planning HMD VR tool reported in PART A. The paper concludes with a view as to how the authors feel that the use of VR systems in product design and manufacturing should evolve in order to enable the industrial adoption of this technology in the future

    Octree-based production of near net shape components

    Get PDF
    Near net shape (NNS) manufacturing refers to the production of products that require a finishing operation of some kind. NNS manufacturing is important because it enables a significant reduction in: machining work, raw material usage, production time, and energy consumption. This paper presents an integrated system for the production of near net shape components based on the Octree decomposition of 3-D models. The Octree representation is used to automatically decompose and approximate the 3-D models, and to generate the robot instructions required to create assemblies of blocks secured by adhesive. Not only is the system capable of producing shapes of variable precision and complexity (including overhanging or reentrant shapes) from a variety of materials, but it also requires no production tooling (e.g., molds, dies, jigs, or fixtures). This paper details how a number of well-known Octree algorithms for subdivision, neighbor findings, and tree traversal have been modified to support this novel application. This paper ends by reporting the construction of two mechanical components in the prototype cell, and discussing the overall feasibility of the system

    Validation of purdue engineering shape benchmark clusters by crowdsourcing

    Get PDF
    The effective organization of CAD data archives is central to PLM and consequently content based retrieval of 2D drawings and 3D models is often seen as a "holy grail" for the industry. Given this context, it is not surprising that the vision of a "Google for shape", which enables engineers to search databases of 3D models for components similar in shape to a query part, has motivated numerous researchers to investigate algorithms for computing geometric similarity. Measuring the effectiveness of the many approaches proposed has in turn lead to the creation of benchmark datasets against which researchers can compare the performance of their search engines. However to be useful the datasets used to measure the effectiveness of 3D retrieval algorithms must not only define a collection of models, but also provide a canonical specification of their relative similarity. Because the objective of shape retrieval algorithms is (typically) to retrieve groups of objects that humans perceive as "similar" these benchmark similarity relationships have (by definition) to be manually determined through inspection

    Automated knowledge capture in 2D and 3D design environments

    Get PDF
    In Life Cycle Engineering, it is vital that the engineering knowledge for the product is captured throughout its life cycle in a formal and structured manner. This will allow the information to be referred to in the future by engineers who did not work on the original design but are wanting to understand the reasons that certain design decisions were made. In the past, attempts were made to try to capture this knowledge by having the engineer record the knowledge manually during a design session. However, this is not only time-consuming but is also disruptive to the creative process. Therefore, the research presented in this paper is concerned with capturing design knowledge automatically using a traditional 2D design environment and also an immersive 3D design environment. The design knowledge is captured by continuously and non-intrusively logging the user during a design session and then storing this output in a structured eXtensible Markup Language (XML) format. Next, the XML data is analysed and the design processes that are involved can be visualised by the automatic generation of IDEF0 diagrams. Using this captured knowledge, it forms the basis of an interactive online assistance system to aid future users who are carrying out a similar design task

    Automated design analysis, assembly planning and motion study analysis using immersive virtual reality

    Get PDF
    Previous research work at Heriot-Watt University using immersive virtual reality (VR) for cable harness design showed that VR provided substantial productivity gains over traditional computer-aided design (CAD) systems. This follow-on work was aimed at understanding the degree to which aspects of this technology were contributed to these benefits and to determine if engineering design and planning processes could be analysed in detail by nonintrusively monitoring and logging engineering tasks. This involved using a CAD-equivalent VR system for cable harness routing design, harness assembly and installation planning that can be functionally evaluated using a set of creative design-tasks to measure the system and users' performance. A novel design task categorisation scheme was created and formalised which broke down the cable harness design process and associated activities. The system was also used to demonstrate the automatic generation of usable bulkhead connector, cable harness assembly and cable harness installation plans from non-intrusive user logging. Finally, the data generated from the user-logging allowed the automated activity categorisation of the user actions, automated generation of process flow diagrams and chronocyclegraphs

    Geometric reasoning via internet crowdsourcing

    Get PDF
    The ability to interpret and reason about shapes is a peculiarly human capability that has proven difficult to reproduce algorithmically. So despite the fact that geometric modeling technology has made significant advances in the representation, display and modification of shapes, there have only been incremental advances in geometric reasoning. For example, although today's CAD systems can confidently identify isolated cylindrical holes, they struggle with more ambiguous tasks such as the identification of partial symmetries or similarities in arbitrary geometries. Even well defined problems such as 2D shape nesting or 3D packing generally resist elegant solution and rely instead on brute force explorations of a subset of the many possible solutions. Identifying economic ways to solving such problems would result in significant productivity gains across a wide range of industrial applications. The authors hypothesize that Internet Crowdsourcing might provide a pragmatic way of removing many geometric reasoning bottlenecks.This paper reports the results of experiments conducted with Amazon's mTurk site and designed to determine the feasibility of using Internet Crowdsourcing to carry out geometric reasoning tasks as well as establish some benchmark data for the quality, speed and costs of using this approach.After describing the general architecture and terminology of the mTurk Crowdsourcing system, the paper details the implementation and results of the following three investigations; 1) the identification of "Canonical" viewpoints for individual shapes, 2) the quantification of "similarity" relationships with-in collections of 3D models and 3) the efficient packing of 2D Strips into rectangular areas. The paper concludes with a discussion of the possibilities and limitations of the approach

    Effects of ultrasound on polymeric foam porosity

    Get PDF
    A variety of materials require functionally graded cellular microstructures whose porosity is engineered to meet specific applications (e.g. mimic bone structure for orthopaedic applications; fulfil mechanical, thermal or acoustic constraints in structural foamed components, etc.). Although a huge variety of foams can be manufactured with homogenous porosity, there are no generic processes for controlling the distribution of porosity within the resulting matrix. Motivated by the desire to create a flexible process for engineering heterogeneous foams, the authors have investigated how ultrasound, applied during the formation of a polyurethane foam, affects its cellular structure. The experimental results demonstrated how the parameters of ultrasound exposure (i.e. frequency and applied power) influenced the volume and distribution of pores within the final polyurethane matrix: the data demonstrates that porosity (i.e. volume fraction) varies in direct proportion to both the acoustic pressure and frequency of the ultrasound signal. The effects of ultrasound on porosity demonstrated by this work offer the prospect of a manufacturing process that can adjust the cellular geometry of foam and hence ensure that the resulting characteristics match the functional requirements

    Geometric Reasoning With a Virtual Workforce (Crowdsourcing for CAD/CAM)

    Get PDF
    This paper reports the initial results of employing a commercial Crowdsourcing (aka Micro-outsourcing) service to provide geometric analysis of complex 3D models of mechanical components. Although Crowdsourcing sites (which distribute browser based tasks to potentially large numbers of anonymous workers on the Internet) are well established for image analysis and text manipulation there is little academic work on the effectiveness or limitations of the approach. The work reported here describes the initial results of using Crowdsourcing to determine the 'best' canonical, or characteristic, views of complex 3D models of engineering components. The results suggest that the approach is a cheap, fast and effective method of solving what is a computationally difficult problem

    Using visual representations for the searching and browsing of large, complex, multimedia data sets

    Get PDF
    Industry as a whole has become increasingly global and digitized in recent years, resulting in a huge increase in data generated by companies, projects and even individuals. This has led to great challenges in visualizing and searching for information. The speed and accuracy at which these large datasets can be effectively mined for information that is relevant and valuable can have a significant effect on company performance. Therefore, this research investigates the feasibility of using visual representations for the searching and browsing of large, complex, multimedia data sets. This paper introduces the SIZL (Searching for Information in a Zoom Landscape) system, which was developed to enable the authors to effectively test whether 2.5D environments can benefit effective data management. The usability of this visualization system was analyzed using experiments and a combination of quantitative and qualitative data collection methods. The paper presents these results and discusses potential industrial applications as well as future work that will improve the SIZL data visualization method
    corecore